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Abstract

The advent of multimedia calls for new scheduling paradigms to handle the combination of time-critical and
| conventional applications present on many multimedia systems. The scheduler of the Mach 3.0 Microkernel has
been rewritten to allow a wide spectrum of scheduling policies, from real-time through time-sharing to background,
to be selected simultaneously for different tasks executing on the same processor. Scheduling policies can be set for
a task or for individual threads within the task. The set of scheduling policies allowed on a processor or set of
processors may be dynamically altered. Scheduling parameters can be set individually for each thread, task, or
scheduling policy enabled on a processor. Each scheduling policy may have its own format for parameters; they are
not limited to integer priorities. New scheduling policies may be configured into a kernel and may be ordered in any
way desired. The resulting system provides enough flexibility for experimentation with new scheduling regimes, yet
is efficient enough to allow a reasonable number of scheduling policies to coexist. When configured with both
real-time and timesharing schedulers, the system smoothly supports both conventional and time-critical applications.
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1. Introduction

General-purpose and real-time computation have existed in two separate worlds. General-purpose operating
systems share processors, large address spaces, and file systems between different users, but do not guarantee
performance. Systems that can meet the strict timing requirements of real-time applications have often been written

for limited hardware and are customized for one specific purpose.

However, the introduction of multimedia into business applications on personal computers has brought the two
worlds together. Users expect smooth video display to coexist with fast spreadsheet calculation. This requires an
operating system that can support both real-time and conventional applications, without compromising either one.
Ideally, the resulting system should allow both general and real-time applications to make full use of the hardware

and operating system.

Recent tesearch on real-time scheduling has provided a firmer theoretical and practical basis for designing
real-time operating systems. A considerable contribution to this area has come from the Advanced Real Time
Systems group (ARTS) at Carnegie Mellon University [8]. Members of the group have explored the rate-monotonic
and earliest-deadline-first scheduling algorithms for real-time jobs. Building a real-time application using these
scheduling paradigms requires analyzing the computation times of the threads in the application. The classical time
line schedule, in contrast, requires determining exactly which activities are executing at each point in time.

These scheduling solutions have been incorporated in RT-Mach [9], a version of the Mach kernel incorporating
real-time features. It provides selectable scheduling policies suitable for real-time applications, taken from the
Integrated Time-Driven Scheduler [7] written for the ARTS system. The interface between the scheduling policy
modules and the rest of the kernel is written so that new scheduling policies can easily be added to the kernel.

At first, scheduling requirements for time-critical applications and conventional jobs appear completely
incompatible. The primary objective of a real time scheduler is to meet the timing requirements of the application,
not to fairly distribute the time among different applications. A low-priority job may be delayed indefinitely by
high-priority jobs; this is acceptable and expected. However, if the conventional jobs are given the lowest priority,
lower than any of the time-critical tasks, real-time applications will automatically be given preference, and both
types of applications can run simultaneously. The time not used by the real-time applications is split fairly among
the conventional applications by the timesharing scheduler.

The RT-Mach kernel itself falls short of meeting these requirements. Each processor is restricted to running
exactly one scheduling policy at any time. Conventional applications must therefore be shut down when a real-time
application is to be run. Since some conventional applications use fixed priority and time sharing scheduling
simultaneously, even these cannot be handled. The only provision for running applications using more than one
scheduling policy is to write a customized policy module that combines the policies and imposes an ordering on
them. Such a customized solution clearly cannot be extended beyond a very small set of policies.

2. New Mach Scheduling Paradigm

The new Mach scheduling paradigm incorporates the real-time scheduling algorithms from RT-Mach, but places
them within a framework which allows them to coexist with timesharing scheduling for conventional applications.
The scheduling paradigm imposes an ordering on the applications’ threads, depending on the scheduling policies to
which they are assigned. The conventional priority value used to schedule threads has been changed to a two-
component value: (policy, ordering). Threads are ordered first by their scheduling policy: time-critical threads have
priority over all non-time-critical threads. Within each scheduling policy, an ordering is also imposed. Time-critical
threads may be ordered by their deadlines; non-time-critical threads are ordered by an arbitrary priority value.




As in a conventional scheduler, the next thread to run is determined by the priorities of all the currently runnable
threads. Since the thread’s scheduling policy is the first component of its priority value, any thread in a higher
scheduling policy (for example, real-time) is automatically of higher priority than any thread in a lower scheduling
policy (for example, time-sharing). Interaction between threads in different scheduling policies is resolved by
obeying the ordering of the policies. In contrast to the Real-Time Mach system, it is unnecessary for any one
scheduling policy to know about the other possible policies that have been configured in order to provide the correct
ordering.

The two-component priority value also allows the scheduler interfaces that set thread priorities to be generalized
for multiple scheduling policies. Again, the priority value passed to the interface includes both scheduling policy
and relative ordering within that policy. The format of the ordering component has been made flexible, to allow
any scheduling policy to be supported by these uniform interfaces.

2.1. Available Scheduling Policies
The Mach kernel is normally configured with the following scheduling policies:
¢ Earliest Deadline First

The thread with the earliest deadline (in actual time) is scheduled to run first. This policy provides for
real-time systems where threads are dynamically added and removed.

e Rate Monotonic

This handles a group of periodic real-time threads whose processor usage can be analyzed in advance.
Threads are run in order of their periods, shortest period first. Non-periodic threads are run after all
periodic threads, in no particular order.

¢ Fixed Priority
Each thread has a priority, ranging from O (highest) to 31 (lowest). The runnable thread with the
highest priority value is chosen to run first.

* Time Sharing

Each thread is assigned a priority from 0 (highest) to 31 (lowest). In addition, a priority increment
value is assigned, depending on the amount of processor time used. The increment depends on a
running exponential average of the processor time used during the last second, adjusted for the total
load on the processor.

* Background
Background threads are run only if no other threads are eligible to run.

2.2. External Interfaces
The interfaces to the priority mechanism have been generalized to support selectable scheduling policies, based
on older Mach interfaces which only supported timesharing scheduling. Priorities appear in four places in the Mach
kemel:
® Each thread has a base priority value. For most scheduling policies, this is the actual priority value; for
timesharing, an increment based on CPU usage is added to form the current priority.

* Each thread also has a maximum priority or priority limit. An unprivileged user cannot set the thread’s
priority higher than its maximum priority.

* A task has a default priority, used to initialize the base priority of newly created threads. One can also
change the priority of all of the threads in a task by changing the task’s priority.

* A processor set has a priority limit used to control the priorities of all of the threads running on that
processor or group of processors.




Following the scheduling paradigm, all of these priorities are now two-component values: policy, parameters.
Each policy has its own notion of parameters for base priority and priority limit. For the timesharing and fixed-
priority policies, these are still numeric values, with lower values denoting higher priorities. For the real-time
policies, the parameter is a time (the thread’s period or deadline). A corresponding limit value is a lower limit on
the period of periodic threads.

The task’s default priority has become a default scheduling policy for newly created threads within the task. In
addition to supplying the base priorities for all new threads, this allows a user to easily specify that all the threads
within a particular task run under the same policy (for example, they are all real-time threads scheduled under the

rate-monotonic policy).

The processor set’s data has been expanded to hold limit values for each scheduling policy currently enabled.
Scheduling policies may be freely enabled or disabled on each processor set, by users with appropriate privilege.
On a multiprocessor, a user may force all time-sharing threads to run on a small number of processors by grouping
them into a processor set and enabling timesharing only on this processor set.

The Mach kernel interfaces for the flexible scheduling policy support are:

kern_return_t processor_set_policy_ add(

processor_set_t pset,
int policy,
policy param t limit,
unsigned int count)

Adds the new scheduling policy policy to the processor set pset, with the scheduling parameter maximum values
set by limit.

kern_return_t processor_set_policy_remove (
processor_set_t pset,
int policy)

Removes the scheduling policy policy from the processor set pset. Threads running policy have their policy reset
to timesharing, or to background if timesharing is not available on the processor set.

The background policy cannot be removed. This guarantees that a processor set will have at least one available
scheduling policy.

kern_return_t processor_set policy limit(

processor_set_t pset,

int policy,

policy param t limit,
unsigned int count,
boolean_t change threads)

Changes the parameter limit values for policy on processor set pset to the new limit values. These limit values
will affect new threads that are created as assigned to processor set pset, or assigned to it.

If change_threads is TRUE, any thread assigned to pset, and running policy, whose scheduling parameters violate
the new limit values, will have its scheduling parameters reduced to limir. Otherwise, existing threads will be
unaffected. This allows a privileged user to set up several high-priority threads, then change the limit values,
preventing any new threads from being assigned as high a priority as the existing threads.




kern return t thread set_policy(

thread t thread,
processor_set_t pset,
int policy,
policy param t param,
unsigned int count)

Sets thread to run the scheduling policy policy, with its scheduling parameters (priority, period, deadline, etc.) set
to param. If no scheduling parameters are supplied (count is zero), the default values for the policy will be used.

The thread’s processor set, pset, must be supplied as a privilege key to allow the policy to be selected; if pset is
not the processor set to which the thread is currently assigned, the call will fail.

The supplied scheduling parameters must be less than or equal to the limit values for pset for this policy;
otherwise the call will fail.

kern return t thread set policy param(

thread t thread,
boolean t set_limit,
policy param t param,
unsigned int count)

Sets new scheduling parameter values for thread’s current scheduling policy. If set_limit is true, this call also sets
the thread’s parameter limit value. The parameters must be valid for the current scheduling policy, and less than or
equal to the limit values for the thread’s current processor set for this policy, and less than or equal to the thread’s
limit values. This allows a privileged user to set a maximum priority (or minimum period) for a thread, and let an
unprivileged user vary the thread’s priority up to the maximum priority, but no higher.

kern_return t thread set policy limit

thread t thread,
processor_set t pset,
policy param t limit,
unsigned int count)

Sets new scheduling parameter limit values for thread’s current scheduling policy. The thread’s current processor
set, pset, must be supplied as a privilege key; if this is not the processor set to which the thread is currently assigned,

the call will fail.

kern return t task_set_default_policy(
task_t task,
processor_set_t pset,
int policy,
policy param t param,
unsigned int count,

boolean t

change threads)

Sets the default scheduling policy for task to be policy, and the default scheduling parameters for that policy to be

param. The default policy and parameters are assigned to new threads created within the task.

If change_threads is true, all existing threads within the task are changed to run policy with the new scheduling
parameters. If any thread cannot be made to run policy with these parameters, the call will return KERN_FAILURE.
This may happen if a thread is assigned to a processor set that does not run policy, or if the scheduling parameters
exceed the limit values for a thread or its assigned processor set. If the call returns KERN FAILURE, as many
threads as possible will be running the new policy, but there will be no indication of which threads are not.




The task’s processor set, pset, must be supplied as a privilege key to allow the policy to be selected; if pset is not
the processor set to which the task is currently assigned, the call will fail.

3. Internal Reorganization

To allow new scheduling policies to be easily added to the Mach kernel, the routines that manage the queue of
runnable threads have been split into two distinct modules, connected by a well-defined interface. The run_queue
module supplies the abstraction of a queue of runnable threads to the rest of the scheduler. Routines are provided to
add a thread to the run queue, to choose the highest priority thread from the run queue and remove it, and to remove
a thread from the run queues to adjust its priority or terminate it. Each of these routines calls a corresponding
routine in the thread’s scheduling policy to implement the actual run queue structure.

3.1. Run Queue Module

Each processor set has a run queue header that holds pointers to the run queues for each policy enabled on that
processor set. There is a common lock for all of the run queues, a count of the total number of runnable threads, and
a bit map of the run queues that contain runnable threads.

The thread_setrun routine adds a runnable thread to the run queues. It calls the enqueuing routine for the thread’s
scheduling policy to add the thread to its policy’s run queue, and sets the bit in the bit map to indicate that this
policy has runnable threads. :

The rem_rung routine removes a runnable thread from the run queues. It calls the remove-from-queue routine to
remove the thread from its policy’s run queue, and clears the bit in the bitmap if the policy’s run queue is now

empty.

The processor searches for a new thread to run by calling thread_select. This routine scans the bit map for the
highest priority scheduling policy that contains runnable threads. It then calls the dequeueing routine for that run
queue’s scheduling policy, which removes and returns the highest priority thread for that policy. The scan of the bit
map makes finding the highest-priority scheduling policy very fast. Asin rem_rung, the policy’s bit in the bitmap is
cleared if the policy’s run queue has no more runnable threads.

At clock interrupts, routine csw_needed is called to check the run queues to determine whether the current thread
should be preempted by a higher priority thread. Again, this is done by scanning the bit map of policies with
runnable threads. However, the search stops at the policy belonging to the current thread. Clearly, the current
thread cannot be preempted by a thread in a lower scheduling class; similarly, it will always be preempted by a
thread in a higher scheduling class. If the first non-empty run queue is the current thread’s run queue, a policy-
specific routine is called to compare the current thread’s priority (ordering) with the highest-priority thread on that
run queue. If the routine indicates that the thread on the run queue has higher priority, the current thread will be
preempted.

3.2. Scheduling Policies

The run queue module and the Mach external interfaces call the individual scheduling policies through a well-
defined interface. The scheduling policy is structured as an object. A policy that is active on a processor set has its
own set of run queues and other local data structures that belong to that instance of the policy. The policy holds a
pointer to the set of interface routines that are called for all operations on run queues, tasks, and threads that run the

policy.




The local run queue structure contains a common header that holds a count of the number of runnable threads on
the queue and a pointer to the function vector for the scheduling policy. Following the header is a policy-specific
structure that includes the priority limit value for the instance of the policy, and the list of runnable threads. Placing
the thread list in the policy-specific portion allows it to be tailored to the policy. For example, the timesharing and
fixed-priority policies use an array of 32 queues, one per priority level. In contrast, the real-time policies use a
single ready queue, on which threads are queued in order of deadline time or period.

The operations are listed here, along with the kemel routines that call them:
Run queue manipulation:
thread t (*thread dequeue) (

run_queue_t runq)

Called by thread_select to remove the highest priority thread from rung, and return it. The run queue is known to
be non-empty.

boolean_t (*thread enqueue) (
run_dqueue_t rung,
thread t thread,
boolean t may preempt)

Called by thread_setrun to enqueue thread on rung, in order by priority. The queuing policy is invisible outside
the policy module itself.

If may_preempt is TRUE, the routine returns whether thread is of higher priority (according to the policy) than
the currently executing thread. Otherwise the routine returns FALSE.

void (*thread remqueue) (
run _queue t runqg,
thread t thread)

Removes thread from rung. The thread is known to be on the run queue.

Called by rem_rung (from thread_hold and thread_dowait) to suspend a thread that is on the run queues. Also
called by routines that change the thread’s policy or scheduling parameters. If the thread is runnable, these routines
remove it from its current run queue, alter its policy or parameters, and replace it on the (possibly new) run queue at
its new position.

Thread priority update and context switch checks:

boolean t (*csw_needed) (
run_queue t runqg,
thread t thread)

Called by csw_needed from clock-interrupt code to determine whether thread (the currently running thread)
should be preempted by the highest-priority thread in rung. Returns TRUE if this is so. Thread is known to run
rung’s scheduling policy.

void (*clock_sched) (
thread t thread,
boolean t end of quantum);

Called by the system clock interrupt to perform random scheduling decisions on thread. End _of quantum is
TRUE if the clock interrupt marks the end of the current quantum. Thread is the currently running thread.




This is used by the timesharing policy to update thread’s CPU usage and current priority. For other policies, this
checks whether there is any other reason to preempt thread.
void (*update priority) (
thread t thread)

Called by thread_setrun to perform random scheduling decisions on thread. This differs from clock_sched in that
the thread is just being made runnable.

This is used by the timesharing policy to update thread’s CPU usage and current priority when thread has not run
for a period of time.

Processor set priority limits:

kern return t (*rung _set_limit) (

run_queue_t rung,
policy param t limit,
natural t count)

Sets limit[count] as the limit values for the scheduling policy on a processor set. Rung is the run queue for the
policy on the processor set.

kern return t (*rung get limit) (

run_gueue_t rung,
policy param t limit,
natural t *count)

Returns the the limit values for the scheduling policy on a processor set in limit[count]. Runq is the ran queue for
the policy on the processor set.

Thread priority values and limits:

kern return_t (*thread set_limit) (

thr;ad_t thread,
policy param t limit,
natural t count)

Sets limit[count] as thread’s limit values for the scheduling policy.

kern return t (*thread set param) (

thread t thread,
policy param t param,
natural_t param count,
boolean_t new_policy,
boolean_t check limits)

Sets param[count] as the scheduling policy parameters for thread. If param is NULL, thread’s current
parameters are not changed if new policy is FALSE (thread is running the policy); otherwise, the thread’s
parameters are set to the policy-specific default values.

The policy parameters (supplied, current, or default) are checked against the limit values for the policy.
Parameters that are invalid for the policy or that exceed the limit values result in an error if check_limits is TRUE;
in this case, the thread’s policy parameters are not changed. Otherwise, the policy parameters are silently set to the
limit values.




If new_policy is TRUE, thread’s limit values are used for the check. Otherwise, the limit values are taken from
the processor set to which thread is assigned.

kern return t (*thread get param) (

thread t thread,
policy param t param,
natural_t *count)

Returns thread’s policy parameters and limit values for the scheduling policy in param[count].
Task priority values:

kern return t (*task_set_param) (
task t task,
policy param t param,
natural t count)

Sets param[count] as the default policy parameters for task.

kern return t (*task_get_param) (

task_t task,
policy param t param,
natural t *count)

Returns task’s default policy parameters for the scheduling policy in param{count].

4. Evaluation

The scheduling policy framework has been used to implement fixed, high priorities for server threads in the single
server Unix emulation under Mach [2]. User threads run under the time-sharing scheduling policy. Server threads
use the fixed priority policy, but may temporarily run as background threads while waiting for synchronization
variables [1]. Although the indirect procedure calls to the scheduler policy modules are in the critical context switch
and system clock interrupt paths, measurements on compilation benchmarks show that they have no effect on system
performance. Part of this result is due to a reorganization of the scheduler code that was done concurrently with the
other work, reducing the aggregate path lengths in spite of the extra functionality.

Results from the Real-Time Mach group show that switching from timesharing to real-time scheduling policies
does, in fact, lead to correct behavior for a time-constrained application. Tokuda [9] evaluates the visual
performance of a program that simulates the rotation of a molecule by using individual threads to move each atom to
its new position. Using time-sharing scheduling, the atoms drift apart and the molecule loses its shape; under the
rate-monotonic scheduling policy, the atoms in the molecule correctly move in synchrony. Similar test programs
running under the Mach kemnel with this scheduling policy framework, and using rate monotonic scheduling, show
identical behavior.

A truer test of the scheduling framework is to run real-time and time-sharing threads simultaneously. When both
the test programs and a time-sharing application are running, the test program still shows its desired synchronous
behavior, up to the point where the kernel starts paging to disk. Above this point, of course, there is no guaranteed
behavior, since the real-time application is not wired into memory.

The scheduler framework allows the easy addition of new scheduling policies, such as Mercer’s processor
capacity reservation scheme [3]. To install a new policy, only the routines that queue threads according to the
policy’s priority scheme need to be written. The surrounding framework manages the interactions between threads
running different policies, and distributes threads to CPUs in a multiprocessor system. The background policy, for




example, was added to the system with about an hour’s work.

5. Related Work

Other operating systems have incorporated both real-time and conventional processing. The CP-V operating
system for the SDS Sigma 7 [5] supported both conventional (batch) and real-time processes via a common run
queue structure. Each process was assigned a base priority, with higher (numeric) values giving lower priority.
Conventional processes had positive priority values; the priorities were varied according to the process’ CPU usage,
as in the Mach timesharing scheduling policy. Real-time processes had negative priorities that were not varied. A
negative priority also prevented a process’ memory from being swapped to disk.

SunSoft’s Solaris 2.1 operating system [6] similarly allows processes to be designated as "real-time.” Real-time
processes, as in CP-V, are given fixed priority, and preempt timesharing threads. They are also exempt from the
usage and load-dependent priority adjustments for timesharing threads.

The actual real-time scheduling policies provided by these two systems include only fixed-priority, round-robin
scheduling. The application designer must carefully calculate the sequence of execution for the set of real-time
processes, and vary priorities at appropriate points during the application in order to ensure timely response. The
rate-monotonic and earliest-deadline-first policies included in the Mach kemel, in contrast, automatically vary
process priorities to guarantee completion; the designer merely has to analyze the application’s total computational
load, not the exact mix of processes executing at each point.

The Mach/RT project [4], like RT-Mach, extends the Mach microkernel to incorporate real-time scheduling
policies. Scheduling policies are separated into individual modules that may be configured into a kemel; the
description places more emphasis on the configurable scheduler interface than on the scheduling policies
themselves. As in RT-Mach, only one scheduling policy may be in effect on a processor at any one time. The only
way to share a machine between conventional and time-critical tasks is to write a customized scheduling policy. In
contrast, the rewritten Mach scheduler automatically dispatches both classes of threads in the correct order.

The closest commercial scheduler equivalent to Mach’s multiple-scheduler framework is IBM’s OS/2 scheduler.
Threads may be assigned to one of four ordered scheduling classes: real-time, fixed priority, timesharing, and
background. Each scheduling class has 32 priority levels. However, the implementation does not provide for
adding more scheduling classes: threads are queued onto one of 128 queues, and the scheduler looks through all of
those queues to find the next runnable thread. Adding a true rate-monotonic scheduler requires not only that more
run queues be added, but that each thread’s rate, measured in microseconds, be reduced to one of the small set of
added queues. This may result in priority inversion among the threads assigned to the same run queue.

6. Conclusion

This paper has presented a scheduling paradigm that handles the needs of multimedia systems running both
real-time and conventional applications. This scheduler framework has been implemented in a version of the Mach
3.0 microkernel. It expands on previous work in real-time scheduling to support modern real-time scheduling
algorithms, allow experimentation with new scheduling policies, and enable timesharing and background jobs to
coexist with real-time applications.
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